New Fairness Metrics for Recommendation that Embrace Differences

نویسندگان

  • Sirui Yao
  • Bert Huang
چکیده

We study fairness in collaborative-filtering recommender systems, which are sensitive to discrimination that exists in historical data. Biased data can lead collaborative filtering methods to make unfair predictions against minority groups of users. We identify the insufficiency of existing fairness metrics and propose four new metrics that address different forms of unfairness. These fairness metrics can be optimized by adding fairness terms to the learning objective. Experiments on synthetic and real data show that our new metrics can better measure fairness than the baseline, and that the fairness objectives effectively help reduce unfairness. ACM Reference format: Sirui Yao and Bert Huang. 2017. New Fairness Metrics for Recommendation that Embrace Differences. In Proceedings of Workshop on Fairness, Accountability, and Transparency in Machine Learning, Halifax, Nova Scotia, 2017 (FAT/ML), 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Parity: Fairness Objectives for Collaborative Filtering

We study fairness in collaborative-filtering recommender systems, which are sensitive to discrimination that exists in historical data. Biased data can lead collaborative-filtering methods to make unfair predictions for users from minority groups. We identify the insufficiency of existing fairness metrics and propose four new metrics that address different forms of unfairness. These fairness me...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Unfairness Metrics for Space-Sharing Parallel Job Schedulers

Sociology, computer networking and operations research provide evidence of the importance of fairness in queuing disciplines. Currently, there is no accepted model for characterizing fairness in parallel job scheduling. We introduce two fairness metrics intended for parallel job schedulers, both of which are based on models from sociology, networking, and operations research. The first metric i...

متن کامل

A New Fairness Index and Novel Approach for QoS-Aware Resource Allocation in LTE Networks Based on Utility Functions

Resource allocation techniques have recently appeared as a widely recognized feature in LTE networks. Most of existing approaches in resource allocation focus on maximizing network’s utility functions. The great potential of utility function in improving resource allocation and enhancing fairness and mean opinion score (MOS) indexes has attracted large efforts over the last few years. In this p...

متن کامل

Multisided Fairness for Recommendation

Recent work on machine learning has begun to consider issues of fairness. In this paper, we extend the concept of fairness to recommendation. In particular, we show that in some recommendation contexts, fairness may be a multisided concept, in which fair outcomes for multiple individuals need to be considered. Based on these considerations, we present a taxonomy of classes of fairness-aware rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.09838  شماره 

صفحات  -

تاریخ انتشار 2017